Prediction of visual perceptions with artificial neural networks in a visual prosthesis for the blind

نویسندگان

  • Cédric Archambeau
  • Jean Delbeke
  • Claude Veraart
  • Michel Verleysen
چکیده

Within the framework of the OPTIVIP project, an optic nerve based visual prosthesis is developed in order to restore partial vision to the blind. One of the main challenges is to understand, decode and model the physiological process linking the stimulating parameters to the visual sensations produced in the visual field of a blind volunteer. We propose to use adaptive neural techniques. Two prediction models are investigated. The first one is a grey-box model exploiting the neurophysiological knowledge available up to now. It combines a neurophysiological model with artificial neural networks, such as multi-layer perceptrons and radial basis function networks, in order to predict the features of the visual perceptions. The second model is entirely of the black-box type. We show that both models provide satisfactory prediction tools and achieve similar prediction accuracies. Moreover, we demonstrate that significant improvement (25%) was gained with respect to linear statistical methods, suggesting that the biological process is strongly non-linear.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphene evaluation in a visual prosthesis with artificial neural networks

The electrical stimulation of the optic nerve is investigated, as an approach to the development of a microsystems-based visual prosthesis. Non-linear prediction models, i.e. artificial neural networks, for phosphene localisation are used and show promising results. The prediction error is reduced up to 20% in comparison with linear statistical models and the error standard deviation is restrai...

متن کامل

PREDICTION OF COMPRESSIVE STRENGTH AND DURABILITY OF HIGH PERFORMANCE CONCRETE BY ARTIFICIAL NEURAL NETWORKS

Neural networks have recently been widely used to model some of the human activities in many areas of civil engineering applications. In the present paper, artificial neural networks (ANN) for predicting compressive strength of cubes and durability of concrete containing metakaolin with fly ash and silica fume with fly ash are developed at the age of 3, 7, 28, 56 and 90 days. For building these...

متن کامل

Prediction of breeding values for the milk production trait in Iranian Holstein cows applying artificial neural networks

The artificial neural networks, the learning algorithms and mathematical models mimicking the information processing ability of human brain can be used non-linear and complex data. The aim of this study was to predict the breeding values for milk production trait in Iranian Holstein cows applying artificial neural networks. Data on 35167 Iranian Holstein cows recorded between 1998 to 2009 were ...

متن کامل

Prediction the Return Fluctuations with Artificial Neural Networks' Approach

Time changes of return, inefficiency studies performed and presence of effective factors on share return rate are caused development modern and intelligent methods in estimation and evaluation of share return in stock companies. Aim of this research is prediction of return using financial variables with artificial neural network approach. Therefore, the statistical population of this study incl...

متن کامل

Prediction of Permanent Earthquake-Induced Deformation in Earth Dams and Embankments Using Artificial Neural Networks

This research intends to develop a method based on the Artificial Neural Network (ANN) to predict permanent earthquake-induced deformation of the earth dams and embankments. For this purpose, data sets of observations from 152 published case histories on the performance of the earth dams and embankments, during the past earthquakes, was used. In order to predict earthquake-induced deformation o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Artificial intelligence in medicine

دوره 32 3  شماره 

صفحات  -

تاریخ انتشار 2004